1 Find $\sum_{k=1}^{5} \frac{1}{1+k}$.

2 The terms of a sequence are given by

$$
\begin{aligned}
u_{1} & =192 \\
u_{n+1} & =-\frac{1}{2} u_{n} .
\end{aligned}
$$

(i) Find the third term of this sequence and state what type of sequence it is.
(ii) Show that the series $u_{1}+u_{2}+u_{3}+\ldots$ converges and find its sum to infinity.

3 A sequence begins

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & \ldots
\end{array}
$$

and continues in this pattern.
(i) Find the 48 th term of this sequence.
(ii) Find the sum of the first 48 terms of this sequence.

4 Sequences A, B and C are shown below. They each continue in the pattern established by the given terms.

A: $1, \quad 2, \quad 4, \quad 8,16,32, \quad \ldots$
B: $\quad 20,-10, \quad 5,-2.5, \quad 1.25,-0.625, \quad \ldots$
$\mathrm{C}: 20,5,1,20,5,1, \ldots$
(i) Which of these sequences is periodic?
(ii) Which of these sequences is convergent?
(iii) Find, in terms of n, the nth term of sequence A.
5 Find the numerical value of $\sum_{k=2}^{5} k^{3}$.[2]
6 (i) Find $\sum_{k=2}^{5} 2^{k}$.[2]
(ii) Find the value of n for which $2^{n}=\frac{1}{64}$. [1]
(iii) Sketch the curve with equation $y=2^{x}$. [2]

